

Published on Web 07/04/2006

Reversible O–O Bond Cleavage in Copper–Dioxygen Isomers: Impact of Anion Basicity

Xavier Ottenwaelder,[†] Deanne Jackson Rudd,[†] Mary C. Corbett,[†] Keith O. Hodgson,^{*,†,‡} Britt Hedman,^{*,‡} and T. Daniel P. Stack^{*,†}

Department of Chemistry, Stanford University, Stanford, California 94305, and Stanford Synchrotron Radiation

Laboratory, SLAC, Stanford, California 94309

Received February 16, 2006; E-mail: hodgson@ssrl.stanford.edu; hedman@ssrl.stanford.edu; stack@stanford.edu

 μ - η^2 : η^2 -peroxodicopper(II) (**P**) and bis(μ -oxo)dicopper(III) (**O**) complexes are valence isomers that differ by the degree of O₂ reduction and the presence of an O–O bond.^{1,2} These isomers can exist in a measurable equilibrium with a small activation energy.^{3–6} This facile isomerization is significant to the processes of making and breaking an O–O bond, which are key steps in photosynthesis, respiration, and the catalytic cycle of tyrosinase, a binuclear copper enzyme that *ortho*-hydroxylates phenols. The characterized **P** species of oxygenated tyrosinase is accepted as the active oxidant in the oxygen atom transfer reaction, but a transient **O**-type species in which the O–O bond is cleaved prior to oxygen insertion cannot be overlooked.⁷ Understanding these steps in detail is important to the design of synthetic catalysts that use O₂ as a terminal oxidant.

A systematic study of the influence of the Lewis basicity of various anions, that is, their coordinating ability, on the P/O equilibrium was undertaken as a model of substrate binding to the P core in tyrosinase.^{5,6} P/O mixtures were prepared with the ligand N, N, N', N'-tetraethylpropane-1,3-diamine (TEPD) by injecting a CH_2Cl_2 solution of $[(TEPD)Cu(CH_3CN)_n](X)$, where $X^- = SbF_6^-$, CF₃SO₃⁻, TsO⁻ (*p*-toluenesulfonate), or CH₃SO₃⁻,⁸ into a precooled, preoxygenated volume of CH₂Cl₂, tetrahydrofuran (THF), or acetone (-85 °C, 1 atm O₂, 1 mM in Cu). P and O isomers were stable only below -75 °C and were identified by their characteristic charge-transfer absorptions (Table 1 and Figure 1).¹ In THF or CH₂Cl₂, [(TEPD)₂Cu₂O₂](CF₃SO₃)₂ exhibits rapid, reversible interconversion between equilibrium positions upon temperature change.⁹ A van't Hoff analysis yields $\Delta H^{\circ} = -4.3(2)$ kJ mol⁻¹ and $\Delta S^{\circ} = -24(2)$ J K⁻¹ mol⁻¹ for this **P** \Leftrightarrow **O** equilibrium in THF: O is favored enthalpically and P is favored entropically, as previously determined for other systems.^{4,5}

More strongly coordinating counteranions bias the **P:O** equilibrium position toward **P**, from ~10:90 with SbF₆⁻ to ~100:0 with CH₃SO₃⁻ (Figure 1a). The **P:O** ratio follows anion basicity regardless of size; for example, CH₃SO₃⁻ is slightly smaller than CF₃SO₃⁻, yet the more compact **O** isomer is not observed with CH₃SO₃⁻. Such a basicity effect is counter-intuitive, as more electron donation to the Cu₂O₂ core is anticipated to stabilize the higher oxidation state of the copper centers and hence favor the **O** isomer.¹⁰

Titration experiments with competing anions highlight the importance of anion basicity and reveal the existence of specific anion/dication interactions. Addition of a more coordinating anion Y^- (CF₃SO₃⁻, TsO⁻, CH₃SO₃⁻, CF₃CO₂⁻, PhCO₂⁻) to a preformed **P/O** solution with a "weaker" anion X⁻ (SbF₆⁻, CF₃SO₃⁻) results in a rapid, isosbestic isomerization in the direction **O** \rightarrow **P**. Spectroscopically pure **P** species are obtained by addition of 1.0 equiv of TsO⁻, CH₃SO₃⁻, CF₃CO₂⁻, or PhCO₂⁻ per binuclear complex (Figure 1b).^{6,11} In all cases, no significant spectral changes

Scheme 1. Equilibrium between TEPD-Based P and O Species

Table 1. $[(TEPD)_2Cu_2O_2](X)_2$ Solutions: UV-Vis Features and P:O Ratios

			UV–Vis Features: λ , nm (ϵ , mM ⁻¹ cm ⁻¹) ^b			
X-	solvent	P:O ^a	0	Р	0	Р
SbF ₆ ⁻	THF	10:90	326 (12)	~360 (sh)	422 (23)	
CF ₃ SO ₃ ⁻	THF	50:50	\sim 320 (sh)	363 (16)	416 (13)	605 (0.5)
TsO ⁻	THF	$100:0^{c}$		363 (26)		636 (1.3)
CH ₃ SO ₃ ⁻	THF	$100:0^{c}$		362 (28)		640 (1.1)
$CF_3CO_2^{-d}$	THF	100:0 ^c		364 (20)		660 (1.2)
$PhCO_2^{-d}$	acetone	100:0 ^c		362 (21)		690 (1.0)

^{*a*} Approximate **P:O** ratio at -85 °C, estimated from the average molar extinction coefficients of the 360 and 400 nm bands (26 and 24 mM⁻¹ cm⁻¹, respectively).^{1 *b*} A weak band is also present at ~500 nm for the **P** species (Figure 1a); sh = shoulder. ^{*c*} At the experimental detection limit (<5% in **O**). ^{*d*} Solutions formed by titration (see text).

Figure 1. (a) UV-vis spectra of $[(\text{TEPD})_2\text{Cu}_2\text{O}_2](X)_2$, with $X^- = \text{SbF}_6^-$, CF₃SO₃⁻, and CH₃SO₃⁻ in THF at -85 °C. (b) Addition of $[N(n-\text{Bu})_4]$ -(PhCO₂) (0-0.9 equiv per dicopper species) to an acetone solution of $[(\text{TEPD})_2\text{Cu}_2\text{O}_2](\text{CF}_3\text{SO}_3)_2$ at -87 °C.¹¹

occur upon addition of more than 1.0 equiv of Y^- per Cu_2O_2 species, and the final **P:O** ratio is the same as that per direct oxygenation of $[(TEPD)Cu(CH_3CN)_n](Y)$ ($Y^- = CF_3SO_3^-, TsO^-$, or $CH_3SO_3^-$). In contrast, the reverse titration of a $[(TEPD)_2Cu_2O_2]$ -(Y)₂ solution with a weaker X^- anion is incomplete even with 200 equiv of X^- per dimer.¹² Overall, these experiments suggest that each dicationic Cu_2O_2 species is associated with *one* anion intimately.¹³

Extended X-ray Absorption Fine Structure (EXAFS) analysis of a frozen THF solution of $[(TEPD)_2Cu_2O_2](CH_3SO_3)_2$ provides structural evidence of the close association between the anion and the Cu_2O_2 core in this spectroscopically pure **P** species. The EXAFS data are consistent with a side-on peroxo-bridged copper dimer having four Cu–N/O¹⁴ interactions at 1.94 Å, one Cu–O at 2.26 Å, and one Cu•••Cu at 3.51 Å (Figure 2a).¹ The scattering atom at

[†] Stanford University. [‡] Stanford Synchrotron Radiation Laboratory.

⁵

Figure 2. EXAFS data (inset) and Fourier transforms with offset fit residuals (bottom) of [(TEPD)₂Cu₂O₂](CH₃SO₃)₂ (-). (a) 4-component fit (---); (b) 5-component fit (---): 4 Cu-N/O = 1.94 Å, 1 Cu-O = 2.26Å, 6 Cu···C = 2.88 Å, 1 Cu···S = 3.47 Å, 1 Cu···Cu = 3.51 Å.

Figure 3. DFT-optimized geometry of {[(TEPD)₂Cu₂O₂](CH₃SO₃)}⁺. Cu- $O_{eq} = 1.94$ Å (avg), Cu - N = 2.02 Å (avg), $Cu - O_{ax} = 2.26$ Å, Cu - C = 2.02 Å (avg), $Cu - O_{ax} = 2.26$ Å, Cu - C = 2.02 Å (avg), Cu - C = 2.02 Å (avg 2.87 Å (avg), Cu···S = 3.36 Å, and Cu···Cu fixed to 3.51 Å.

2.26 Å is required for a good fit and is ascribed to a CH₃SO₃⁻ oxygen atom,15 consistent with the titration experiments. Coordination of CH₃SO₃⁻ would place the sulfur atom within 3.3–3.8 Å of the copper centers, which corresponds to the poorly fitted region in the 4-component model. A 5-component EXAFS fit with a Cu···S interaction at a refined distance of 3.47 Å¹⁶ provides a better match to the data (Figure 2b, Table S1). The dual requirement for a Cu-O interaction at 2.26 Å and a Cu-S interaction at 3.47 Å in the EXAFS fit establishes that the CH₃SO₃⁻ anion is well-ordered at close range from the Cu_2O_2 core.

Density Functional Theory (DFT) calculations¹⁷ support the EXAFS structure. A plausible model consists of the association between a [(TEPD)₂Cu₂O₂]²⁺ molecule and one CH₃SO₃⁻ anion, in accord with the experimental 1:1 anion-to-dimer stoichiometry. Electronic optimization of this model with a Cu---Cu distance fixed to the experimental value of 3.51 Å converges to the P species depicted in Figure 3. The CH₃SO₃⁻ anion bridges the two copper-(II) ions through axial positions, a ligation mode documented for the weaker CF₃SO₃⁻ anion in copper dimers.¹⁸ The calculated distances about the copper ions agree closely with the EXAFS results, notably for the axial oxygen atoms. The Cu₂O₂ core exhibits a slight butterfly distortion with a dihedral angle of $\sim 150^{\circ}$ between the two CuO₂ planes that may account for the weak feature at \sim 500 nm in the UV-vis spectrum of this **P** species (Figure 1a).¹⁹

The axial ligation mode of the anion is substantiated experimentally. The \sim 600 nm charge-transfer feature of the **P** isomers shifts to lower energies by 12% as the basicity of the counteranion increases from CF₃SO₃⁻ to PhCO₂⁻ (Table 1). Since this transition originates from the *out-of-plane* π^* orbital of the peroxo moiety, this large shift strongly suggests that the anion is positioned above the Cu₂O₂ plane. This indirect characterization of the anion-core association may become useful for probing substrate binding to a P core.

In conclusion, axial binding of an anion induces an electronic/ electrostatic, not steric, preference for the P isomer; the O-O bond is not cleaved with an anion positioned axially on the Cu centers. In oxytyrosinase, although the substrate presumably approaches the **P** core from above,²⁰ its subsequent deprotonation yields a phenolate anion, which is much more basic than the anions used here. Such a strong ligand can potentially redefine the equatorial planes of the copper centers with minimal reorganization of the O2-derived ligands. Such change could trigger O-O bond cleavage and yield a reactive **O**-type species, as suggested recently.⁷

Acknowledgment. Grants from the NIH are gratefully acknowledged: GM-50730 (T.D.P.S.) and RR-01209 (K.O.H.). The SSRL is supported by the DOE-BES and the SSRL XAS facilities by DOE-BER and NIH-NCRR-BTP.

Supporting Information Available: Experimental, EXAFS, and DFT details. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1045.
- (2) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076.
- (a) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young, V.
 G.; Que, L., Jr.; Zuberbühler, A. D.; Tolman, W. B. *Science* 1996, 271, 1397–1400.
 (b) Henson, M. J.; Vance, M. A.; Zhang, C. X.; Liang, H.
 C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 5186– 5192
- (4) (a) Cahoy, J.; Holland, P. L.; Tolman, W. B. Inorg. Chem. 1999, 38, 2161-Zl68. (b) Liang, H. C.; Henson, M. J.; Hatcher, L. Q.; Vance, M. A.; Zhang, C. X.; Lahti, D.; Kaderli, S.; Sommer, R. D.; Rheingold, A. L.; Zuberbühler, A. D.; Solomon, E. I.; Karlin, K. D. Inorg. Chem. 2004, 43, 4115 - 4117
- (5) Mahadevan, V.; Henson, M. J.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2000, 122, 10249-10250.
- Stack, T. D. P. Dalton Trans. 2003, 10, 1881-1889.
- Mirica, L. M.; Vance, M.; Jackson Rudd, D.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. Science 2005, 308, 1890–1892.
- (8) The 1:1 TEPD-Cu(I) complex was prepared in a drybox by mixing equimolar amounts of TEPD and [Cu(CH₃CN)_n](X) (n = 3, 3.5, or 4) in CH₂Cl₂. This clear, colorless solution was used directly. The salts [Cu-(CH₃CN)₃](TsO) and [Cu(CH₃CN)_{3.5}](CH₃SO₃) were prepared by adapting the procedure of Kubas, G. J.; Monzyk, B.; Crumbliss, A. L. Inorg. Synth. **1979**, 19, 90-92.
- (9) In cases where the P:O ratio differs significantly from 1:1, the equilibrium presumably occurs, but is difficult to detect due to the predominance of one isomer and the broadness of the UV-vis features.
- (10) Hatcher, L. Q.; Vance, M. A.; Sarjeant, A. A. N.; Solomon, E. I.; Karlin, K. D. Inorg. Chem. 2006, 45, 3004–3013.
- (11) Strong anions are detrimental to the stability of the Cu₂O₂ species. The use of PhCO2- was successful only in acetone at -87 °C with slow addition of up to 1.0 equiv of anion per dimer. The acetate anion behaves similarly, but its **P** species is too unstable to allow a complete titration.
- (12) The **P**:**O** ratio is fairly insensitive to ionic strength; only 10% of the total Cu₂O₂ concentration is converted from P to O with 200 equiv of CF₃SO₃
- added per [(TEPD)₂Cu₂O₂](CF₃SO₃)₂ (cf. Supporting Information).
 (13) The **P:O** ratios of [(TEPD)₂Cu₂O₂](X)₂ (X⁻ = SbF₆⁻ or CF₃SO₃⁻) in the more polar solvent acetone are consistently <10:90, suggesting that anion association is weak in these cases. The more basic TsO⁻ and CH₃SO₃⁻ anions yield solutions of the same composition in all three solvents, suggesting that they are intimately associated with the Cu2O2 species.
- Scatterers differing by $Z \pm 1$ are not distinguishable in an EXAFS analysis. (14)
- (14) Scatterers differing by 2 L 1 are not distinguistable in an LXATS analysis. For these data, the resolution of such scatterers is ~0.12 Å.
 (15) Mahadevan, V.; DuBois, J. L.; Hedman, B.; Hodgson, K. O.; Stack, T. D. P. J. Am. Chem. Soc. 1999, 121, 5583–5584.
 (16) Cu^{...}S scattering at 3.4 Å has the same frequency but opposite phase as
- Cu····Cu scattering at 3.5 Å. This coincidence prevents independent determination of these two components. Therefore, their σ^2 parameters were constrained to have equal values during refinement
- (17) DFT optimizations were performed in vacuo with a B3LYP function, a 6-31G* basis set, and a broken-symmetry wave function for the singlet ground state.
- (18) (a) Van Albada, G. A.; Mutikainen, I.; Turpeinen, U.; Reedijk, J. Inorg. Chim. Acta 2001, 324, 273-277. (b) Van Albada, G. A.; Smeets, W. J J.; Spek, A. L.; Reedijk, J. Inorg. Chim. Acta **1997**, 260, 151–161. (c) Dedert, P. L.; Sorrell, T.; Marks, T. J.; Ibers, J. A. Inorg. Chem. **1982**, 21 3506-3517
- (19) Pidcock, E.; Obias, H. V.; Abe, M.; Liang, H. C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 1299–1308.
- Mato Jan, Chem. Bole: 197, 121, 129 (1960).
 Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. J. Biol. Chem. 2006, 281, 8981–8990.

JA061132G